Young Shik Shin, Ph.D.
Technologies for medical diagnostics – invented for life

I am a Senior Expert with a broad background from mechanical engineering to medical diagnostics. Currently, I am a Senior Expert in the bioelectronics team. Our team is developing new technologies for next-generation medical diagnostics, especially for point-of-care applications. Our vision is to revolutionize healthcare by combining Bosch competencies such as MEMS sensors, circuit design, wireless communication, and biochemistry.
Curriculum vitae
- University of California (LA)
- California Institute of Technology
- Seoul National University
Selected publications

Ji Il Choi et al. (2020)
- Ji Il Choi, Christopher Johnson, Nadezda Fomina, Armin Darvish, Christoph Lang, Young Shik Shin*, Han Seul Kim*, and Seung Soon Jang
- American Chemical Society ACS

Young Shik Shin et al. (2020)
- Young Shik Shin, Nadezda Fomina, Christopher Johnson, Thomas Rocznik, Habib Ahmad, Rachel Patricia-Andrea Staley, Juliane Weller, Christoph Lang
- Analytical Chemistry

Ji Il Choi et al. (2020)
- Ji Il Choi, Han Seul Kim, Young Shik Shin, Christopher Johnson, Nadezda Fomina, Patrick Staley, Christoph Lang, and Seung Soon Jang
- American Chemical Society ACS Omega

N. Kravchenko-Balasha et al. (2016)
- N. Kravchenko-Balasha, Y. S. Shin, A. Sutherland, R. D. Levine, J. R. Heath
- Proceedings of the National Academy of Sciences of the Unites States of America, vol. 113, issue 20, p. 5520–5525
Interview with Young Shik Shin, Senior Expert

Senior Expert for Medical Diagnostic Technologies
Please tell us what fascinates you most about research.
Influencing people’s real lives through my inventions has been the major motivation of my research. The outcome of my master’s thesis work was commercialized by a startup company spun out of my former research group and now you can find the product in the market. This experience boosted my passion toward practical engineering through which you can help people by making new technologies available. My research for my Ph.D. and during my time at UCLA also focused on practical technology developments, some of which are used by startup companies as well.
What makes research done at Bosch so special?
I believe that Bosch has a huge potential in the healthcare field. It is not just because of the motto, “Invented for Life”. Bosch has competencies in core engineering fields such as sensors, actuators, and even packaging which are very relevant to medical device development. Medical devices also require a high level of regulatory practice for production and development processes. Since the automobile industry also has high standards for quality control, it is not so difficult for us to achieve the standards required for medical devices. The Bosch hospital is another great asset we have. We can get direct input on various clinical cases. All of these indicate, I believe, that what we develop here has the preconceived momentum to become a medical test product, and that is something very special for the healthcare industry.
What research topics are you currently working on at Bosch?
The basis of the research in our team is the synergistic combination of electronics with biology. Circuit design and electronics is the core strength of our department, and we want to incorporate this into the technologies for biology. I am currently developing biosensors targeting proteins and DNA. These tests are widely used in the clinic as well as in fundamental biology research. The role of electronics, however, is very limited for such tests. I want to bring more electronics to diagnostics, which can provide more accurate and faster test results to doctors and patients.
What are the biggest scientific challenges in your field of research?
I think it is the gap. There are many different kinds of gaps to overcome in the medical diagnostics field. The first gap is between clinicians and engineers. Engineers need to understand how medical doctors use technologies in their practice and what the actual needs are, which is not straightforward to learn in many cases. Another gap is between available cutting-edge technologies and currently used ones. Medicine is a very conservative field and it is difficult to expect a very fast adoption of new things. A new medical device has to gain FDA approval to get into the market and it usually takes several years at least. This widens the gap even further. Therefore, minimizing those gaps are our challenges in order to develop technologies that have a higher potential impact in the clinic yet a lower barrier for commercialization.
How do the results of your research become part of solutions "Invented for life"?
We are developing technologies for healthcare. I think that simply answers the question.
Get in touch with me
Young Shik Shin
Senior Expert for Medical Diagnostic Technologies